
Ion Velocity in the Discharge Channel and 
Near-Field of the HERMeS Hall Thruster

Wensheng Huang, Hani Kamhawi, and Daniel A. Herman
NASA Glenn Research Center

Jul 10, 2018
Present at AIAA Propulsion and Energy Forum

National Aeronautics and Space Administration

www.nasa.gov 

Approved for public release; distribution is unlimited.

https://ntrs.nasa.gov/search.jsp?R=20180005555 2019-04-29T08:18:00+00:00Z



National Aeronautics and Space Administration Approved for public release; distribution is unlimited.

Outline

• Introduction
•Principles of LIF
•Experimental Setup
•Data analysis
•Results
Near the discharge channel
Downstream of pole covers

•Conclusion

2



National Aeronautics and Space Administration Approved for public release; distribution is unlimited.

Introduction
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• A NASA GRC and JPL team developed a 12.5-kW, 
magnetically-shielded Hall thruster, called Hall 
Effect Rocket with Magnetic Shielding (HERMeS)

• Transitioned to commercial production under 
Aerojet Rocketdyne’s Advanced Electric 
Propulsion System (AEPS)

• Candidate to provide propulsion for the Power and 
Propulsion Element, the first element of NASA’s 
Gateway

• Continuing risk reduction activities using HERMeS
• Developing a related plasma diagnostics package 

called Plasma Interaction Sensors for Correlation 
with Environment Simulations (PISCES)

◄ HERMeS in
operation

Power & Propulsion 
Element (PPE)
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HERMeS Test Campaign Status
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• Other JPC papers on AEPS and HERMeS 
 Hall, AEPS hollow cathode testing (EP3, Mon 9:30a)
 Benavides, Thrust vector probe (EP8, Mon 3:30p)
 Mackey, Uncertainty in thrust stand (EP8, Mon 4:30p)
 Frieman, TDU long duration wear test (EP10, Tue 9:30a)
 Lobbia, TDU environmental testing (EP10, Tue 10:00a)
 Lopez Ortega, Modeling pole erosion (EP10, 10:30a)
 Lobbia, Accelerated backsputter test (EP10, 11:00a)
 Kamhawi, Magnetic topology optimization (EP14, 3:30p)
 Ahern, In-situ wear assessment (EP14, 4:00p)
 Mikellides, Cathode spot-to-plume mode simulation 

(EP14, 4:30p)
 Yeats, 13 kW EP system architecture (EP14, 5:30p)
 Katz, Accel region electron transport sim (EP17, 9:30a)
 Choi, 3D electron fluid model for plume (EP17, 10:00a)
 Lopez Ortega, First principles transport model (EP20, 

3:30p)
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Why LIF?
• HERMeS/AEPS project need plasma data from inside the discharge channel 

for model validation
 Injected probes (ex: HARP) are too perturbative (Jorns, AIAA-2015-4006) 

• LIF can get ion velocity without perturbing plasma, which can be related back 
to electron mobility

• Concurrently conducting LIF studies at JPL (Chaplin, IEPC 2017-229) and 
GRC
 Functional checkout test and get reference TDU data in GRC VF6
 EDU test in GRC VF5 at lowest achievable background pressure
 Time resolved LIF at JPL Owens chamber

• Goals
 Complete data set for model validation
 Confirmation that EDU and TDU have the same discharge characteristics
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How does LIF work?

6

• Moving atoms absorb light at shifted 
frequency (Doppler effect)

• Collect emitted fluorescence while 
varying laser frequency to measure 
velocity distribution function (VDF)

• XE II 835.0 nm is easy to access 
with commercial diode laser
 Metastable
 Representative of bulk ion VDF
 Fluoresce in green, 542.1 nm
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Experimental Setup – Test Article
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• HERMeS TDU1
 Throttle range from 0.6 to 12.5 kW, 2000 to 

3000 sec
 Magnetic shielding topology
 Centrally mounted cathode, 7% cathode flow 

fraction
 Cathode tied to thruster body
 Test was in VF6, ~1.2e-5 Torr near thruster

• This presentation will focus on:
 300, 400, 500, and 600 V conditions
 Nominal magnetic field
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Experimental Setup – Air Side Injection Optics
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Experimental Setup – Vacuum Side Optics

9



National Aeronautics and Space Administration Approved for public release; distribution is unlimited.

Experimental Setup – Tower Cooling and 
In-Situ Alignment
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Reference Target

In-situ Alignment
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Experimental Setup – Air Side Collection
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• Collected fluorescence > monochromator > 
photomultiplier > trans-impedance amplifier > 
lock-in amplifier > computer data

• Stationary reference signal > lock-in amplifier > 
computer data

• Computer
 Control thruster motion stages
 Control optics alignment motors
 Read wavemeter
 Read laser power monitor
 Read lock-in amplifier outputs
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Data Analysis
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• Saturation study was performed, broadening 
no more than 10% on narrowest VDFs

• Hyperfine structure and natural broadening 
small compared to the VDFs

• Zeeman effect uncorrected and will be treated 
in future analysis

• Data analysis steps:
 Convert wavemeter and OG signal to velocity
 Correct intensity by laser power variation
 Apply curve-fits (Gaussian, skew-normal, twin 

Gaussian)

• Spatial uncertainty: 0.5 mm
• Velocity uncertainty: ±100 m/s typical (±600 

m/s for noisiest scans)

Skew-normal fit

Twin Gaussian fit
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Channel Centerline VDFs: 300 V, 6.3 kW
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Channel Centerline VDFs: 600 V, 12.5 kW
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Why sinusoidal spatial oscillation appears as twin 
peak structure in time-averaged LIF
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Channel Centerline Velocity Profiles
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Averaged XEII velocity along channel CL Velocity normalized by max velocity
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Discharge Channel Ion Velocity Vector: 300 V, 6.3 kW
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300 V, 6.3 kW
30 km/s = 612 eV
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Discharge Channel Ion Velocity Vector: 600 V, 12.5 kW
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600 V, 12.5 kW

30 km/s = 612 eV
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Pole Cover Ion Velocity Vector
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IFPC, 300 V, 6.3 kW

IFPC, 600 V, 12.5 kW OFPC, 500 V, 10.4 kW

OFPC, 300 V, 6.3 kW

IFPC = Inner Front Pole Cover, OFPC = Outer Front Pole Cover

5 km/s = 17 eV

15 km/s = 153 eV
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Preliminary Results for Energy of Ions 
Bombarding Pole Covers
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Operating 
condition

Average ion 
energy, IFPC, eV

FWHM energy, 
IFPC eV*

Average ion 
energy, OFPC, eV

FWHM energy, 
OFPC, eV*

300-6.3 0 to 20 25 to 72 81 to 119 33 to 91

400-8.3 3 to 7 19 to 74 77 to 99 97 to 145

500-10.4 2 to 5 26 to 46 75 to 77 102 to 155

600-12.5 2 to 15 20 to 48 Low signal
*Full-width-at-half-maximum value of the ion energy distribution. FWHM energy near IFPC 
were artificially broadened by Zeeman effect.
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Conclusion
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• New LIF capability for characterizing high-
power EP devices at GRC
 Compatible with engineering hardware

• Completed functional checkout and collected 
TDU data

• Presence of low-energy population near 
discharge channel, likely to be CEX ions
 Energy and direction of high-energy and low-

energy ions in excellent agreement with far-field 
RPA data

• Ions near IFPC have low average energy 
while ions near OFPC have high average 
energy; pole ions have large spread in energy
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